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Abstract
Soil ecosystems contain and support the greatest amount of
biodiversity on the planet. A majority of this diversity is made
up of microorganisms, most of which are beneficial for
humans. However, some of these organisms are considered
human pathogens. In light of the current severe acute respi-
ratory syndrome coronavirus-2 (SARS-CoV-2) outbreak, one
may ponder the origin of the next pandemic and if soil may
represent a source of pathogens with pandemic potential. This
review focuses on several bacterial, fungal, and viral patho-
gens that can result in human infection due to direct interaction
with the soil. Moreover, the current status of knowledge
regarding SARS-CoV-2 survival in and transmission from soil
is reviewed.
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Introduction
Soils provide essential ecosystem services to humans,
many of which relate directly to human health [1,2]. The
macroorganisms and microorganisms that live in soil are
responsible, either directly or indirectly, for providing
many of these ecosystem services. The soil ecosystem
contains the greatest amount of biodiversity in the world
[3]. The inherent complexity of soil systems results in
microecosystems for many different pathogenic and
nonpathogenic organisms [4]. In most undisturbed
www.sciencedirect.com
ecosystems, pathogens and prey are kept in check by
ecological predatoreprey relationships [5] and most soil-
borne/dwelling pathogens do not pose a risk to human
health [6]. However, of the organisms that do cause
human disease, many of them or their vectors live in or
spend part of their life cycle in soil. This often occurs in
disturbed soil ecosystems where pathogens directly or
indirectly (i.e., through animals or another vector) enter

the human host and cause disease. Therefore, in light of
worldwide land use change and degradation, changing
climate, weather extremes [7e9], and the current severe
acute respiratory syndrome coronavirus-2 (SARS-CoV-2)
pandemic, one may ponder the origin of the next
pandemic and what role, if any, soil may play.

The next viral pandemic will more than likely result
from zoonotic infections; therefore, more zoonotic viral
pandemics should be expected [10e15]. Less likely, but
still meaningful, is the possibility of pandemic reemer-

gence from thawing permafrost soils/burial sites (as
discussed in a following section). Recent reviews spec-
ulating which pathogen may be next to emerge have
recently been published [10e12,16] (Table 1).
Numerous government and nonprofit agencies around
the world are monitoring these emerging infectious
diseases.

For this review, we have focused on: (1) only those
pathogens that can cause human disease directly from
exposure to soil, (2) exposure to pathogens that are

harbored in frozen carcasses buried in the soil, and (3)
survival of viruses in the soil. Pathogens found indi-
rectly in the soil such as from the addition of fecal
material, wastewater, sewage, manure, etc are not
considered further in this review, and due to space
limitations not all potential pathogens are discussed.
The authors refer the reader to the following in-depth
reviews for additional discussion of soil pathogens
[17e22].

Direct exposure
Pathogenic bacteria or fungi can directly enter humans
through cutaneous wound inoculation, ingestion of
contaminated food or direct ingestion of soil (geophagy),

or through the respiratory route via aerosols such as
windblown endospores or pathogens carried on dust
particles. Below we briefly discuss specific pathogens
that fall within this broad definition.
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Table 1

Soil pathogens that directly cause human infections and their pandemic potential.

Disease Causative agent Pandemic potential

Plague (bubonic and pneumonic) Yersinia pestis High
Melioidosis Burkholderia pseudomallei Intermediate to High
Anthrax Bacillus anthracis Low to Intermediate
Tetanus Clostridium tetani Low
Botulism Clostridium botulinum Low
Listeriosis (gastrointestinal; meningitis) Listeria monocytogenes Low
Tularemia Francisella tularensis Low
Leprosy Mycobacterium leprae Low
Shigellosis Shigella spp. Low
Gastrointestinal disease Salmonella enterica Low
Gastrointestinal disease Campylobacter spp. Low
Gastrointestinal disease Escherichia coli (esp. H0157:H7) Low
Legionnaires’ Disease Legionella spp. Low
Coccidioidomycosis Coccidioides spp. Low
Blastomycosis Blastomyces dermatitidis Low
Histoplasmosis Histoplasma capsulatum Low
Sporotrichosis Sporothrix schenckii Low
Meningitis Exserohilum rostratum Low
Multiple Viruses (unknown; emerging) Unknown

Table 1: A summary of the organisms discussed in this review. Pandemic potential is a highly subjective rating based mostly on the ability of the organism to
spread person to person via respiratory droplets. A low pandemic rating should not negate continued surveillance as these organisms have and can cause
local outbreaks and regional epidemics.
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Bacillus anthracis
B. anthracis is a gram-positive bacterium that causes the
zoonotic disease anthrax in humans, wildlife, and live-
stock. Anthrax can clinically present in three different
ways depending upon the exposure mechanism (cuta-
neous, inhalation, or ingestion). B. anthracis is found in
soils throughout the world as endospores, dormant
structures that can last for decades within soils. Extreme

weather events such as heavy rains can bring the en-
dospores to the soil surface resulting in exposure and
drought/wind can aerosolize anthrax endospores result-
ing in inhalation anthrax [23]. Escalating soil degrada-
tion throughout the world and extreme weather events
will likely increase human and animal exposure to
B. anthracis. However, although a serious disease for
those exposed, B. anthracis does not readily spread from
person to person (is not contagious). Infection occurs
only from exposure to endospores, therefore the
pandemic potential of anthrax is low, notwithstanding

nefarious bioterrorism ambitions (as seen in the United
States in 2001) [24].

Clostridium spp.
Tetanus and botulism are two diseases caused by toxins
produced by Clostridium tetani and Clostridium botulinum,
respectively. These toxins paralyze muscles and can lead
to death [25]. C. tetani has a worldwide distribution in
soil and feces [21]. Increased prevalence in tropical
latitudes is often related to climate and soil pH [25].
C. botulinum causes sporadic cases and outbreaks world-
wide [21] due to its worldwide distribution in soil and
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water and can persist in soils for decades [26].
C. botulinum endospores often contaminate food that is
then ingested resulting in disease. C. botulinum endo-
spores resist boiling temperature; therefore, pressure
cooking is required to inactivate the endospores.
Although a serious disease for those infected, C. tetani
and C. botulinum do not spread readily from person to
person (are not contagious) and infection occurs only
from exposure to endospores. This exposure results in
vegetative cell regeneration and toxin production,
therefore the pandemic potential is low.

Listeria monocytogenes
L. monocytogenes causes food-borne gastrointestinal
illness and more serious meningitis [21]. It is ubiquitous
in soil, water, and vegetation. L. monocytogenes does not
form endospores, but it can withstand severe environ-
mental stress such as extremes in temperature, pH,
salinity, etc. [27]. Again, direct exposure (ingestion of

contaminated soil/vegetation or the fecal-oral route) is
required to cause disease, and it is therefore not
necessarily contagious; therefore, the pandemic poten-
tial is low.

Yersinia pestis
Y. pestis, the causative agent of pneumonic and bubonic
plague, has greatly affected the course of human history
by causing three recorded pandemics [28]. Although
Y. pestis exists in both rodent populations and their fleas,
Y. pestis was reportedly isolated from the soil as early as
1894 [29] and later in 1963 [30]. The long-term
www.sciencedirect.com
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persistence of Y. pestis in soil more than likely plays a role
in its epidemiology. Y. pestis re-emerges from specific
geographical foci after decades of silence, where it has
been shown to survive for extended periods of time in
soil [31]. Although both pneumonic and bubonic plague
are highly fatal bacterial infections, the pneumonic form
of plague is exceptionally contagious. Therefore, the
pandemic potential of soil-induced/rodent-induced/

flea-induced Y. pestis infection remains high, not to
mention the potential of a bioterrorism-induced
pandemic.

Burkholderia pseudomallei
Burkholderia pseudomallei is the causative agent of
melioidosis, which is considered a potential emerging
infectious disease, especially in tropical, developing
countries [32]. The bacterium is mainly found in
anthrosol and acrisol soil types that experience high
rainfall and temperature [32]. It is not highly conta-
gious, therefore a natural infectioneinduced pandemic

is unlikely; however, the threat of bioterrorism is
suspected to be high as an organism that causes a
melioidoisis-like disease has been used in the past.

Francisella tularensis
F. tularensis causes tularemia, which infects humans
directly through contact with infected wild animals,
undercooked wild game meat products, or soil [22].
Found throughout the world in soils (deposited by
infected animals), tularemia is a serious disease for those
infected. Although highly contagious from environ-
mental sources, it rarely spreads person to person;

therefore, the pandemic potential is low.

Other bacteria
A large number of other human bacterial infections have
been suggested to occur from exposure to soil. These
include Salmonella enterica, Campylobacter spp., Escherichia
coli (food-born gastrointestinal disease), Legionella spp.
(pneumonia; Legionnaires’ Disease), Mycobacterium
leprae (leprosy), Shigella spp. (shigellosis), and many
others [22]. The bacteria listed above are not highly
contagious and therefore the pandemic potential is low.

Fungal infections
Fungi represent one of the most diverse kingdoms on
the planet. Most fungi are beneficial, provide essential
ecosystem services, and do not cause human disease
[33]. In fact, most fungal infections only occur in
immunosuppressed persons. However, several patho-
genic fungal species are found in soil that can infect
immunocompetent individuals [22]. Herein, we briefly
mention several of these species. Coccidioides spp. are the
causative agent of coccidioidomycosis, also known as
valley fever, which is acquired through contaminated
dust inhalation (although there is debate whether it is a

true soil resident) [34]. Blastomyces dermatitidis, the
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causative agent of blastomycosis, is endemic in soils
(perhaps not worldwide) and can survive harsh envi-
ronmental conditions similar to L. monocytogenes [35].
Histoplasma capsulatum causes histoplasmosis, is found in
temperate climate soils throughout the world, and is
often an opportunistic pathogen [22,36]. Sporothrix
schenckii can cause sporotrichosis which is a rare subacute
to chronic infection resulting from direct exposure

(cutaneous or inhalation) and zoonotic transmission is
also know to occur [22]. Exserohilum rostratum is
commonly found in soils and can cause problems in
wounds contaminated with soil or plant material [33].
Although persons infected with these fungal species can
have serious, life-threatening diseases, these diseases
are not considered to be contagious, therefore the
pandemic potential is low.

Exposure to frozen pathogens
Extreme weather events, changing climate, expansion of
migratory habitats, population growth, poverty/socio-
economic status, refugees and migrants, and warfare/
conflict are increasingly causing land use change and
degradation [37,38]. Land use change and degradation

increases the likelihood of humans being exposed to
new or resurrected microbes [39]. New microbes are
microorganisms that humans have not previously been
exposed to. Exposure can occur during deforestation,
refugee migration, and extreme weather events,
amongst others. Resurrected microbes, on the other
hand, are microbes that are not known to currently
circulate in nature but are either found in laboratories or
frozen in permafrost (usually in ancient human and
animal burial sites). Warming of the northern latitudes
melts the permafrost and unthaws the microorganisms

found in it. This melting provides extensive new habi-
tat(s) for the emergence of novel pathogens [39]. In
fact, deadly infections of the 18th and 19th centuries
have been suggested as candidates for potential
reemergence. Risk factors include the northern expan-
sion of bird migration (which can also introduce patho-
gens into the newly unthawed habitat), an increase in
insect vector populations, and a large increase in
zoonotic infections [40,41].

Two examples will be used to highlight how diseases
may migrate from thawed permafrost regions. First, in

Russia alone, there are 13,885 known cattle burial
grounds, mostly due to anthrax outbreaks. Endospores
of Siberian anthrax have been shown to remain viable for
about 105 years in permafrost [42] and reports of
anthrax transmission to reindeer from these burial sites
reinforces this long-term survival rate [41]. Seasonal
migration patterns of reindeer could also impact the
exposure of humans to Brucella spp., the causative agent
of brucellosis. Therefore, populations relying on rein-
deer for food and survival are at high risk. Moreover,
future mining, construction, and agricultural develop-

ment on these thawed soils will only increase the risk for
Current Opinion in Environmental Science & Health 2020, 17:35–40
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38 Environmental health: COVID-19
human infection as humans migrate into these areas and
disrupt the soil and burial sites [39,43,44]. Secondly, a
number of ‘new’ viruses have been isolated from
permafrost. A replication-competent Pithovirus was
isolated from 30,000-year-oldethawed permafrost in
Siberia [45] and 5000-year-old frozen caribou feces has
been shown to contain viable virus particles [46]. If
these viruses are human pathogens or mutate, allowing

them to infect humans, the current human population is
likely to have no prior immunity toward these viruses, so
their pandemic potential may be high. However, that is
highly speculative; they may also represent no human
threat.

Survival of viruses in soil
Compared to soil bacterial and fungal pathogens, the soil
virome is drastically understudied in the context of
human health [47]. Most articles in the literature fail to
adequately distinguish between eukaryotic viruses (vi-
ruses that may affect humans) and bacteriophages (vi-
ruses that only infect bacteria). Because bacteriophages
are not human pathogens, there is potential for confusion

in the soil virome literature as many publications
describing soil ‘viruses’ are actually soil bacteriophage
studies [47,48]. However, the few studies that have
looked at the survival of eukaryotic viruses in soil have
shown that viruses are able to adsorb to soil surfaces (i.e.
the surface of clays and particulate organic matter) and
that soil temperature, moisture content, phosphorus and
aluminum levels, and pH all play a role in virus survival
[49]. Tierney et al. [50] have shown that poliovirus (a
nonenveloped virus) can survive in soil for eleven days in
the summer months and ninety-six days in the winter

months. Studies comparing the survival of enveloped to
nonenveloped viruses have been performed on inanimate
surfaces [51,52], but few studies have occurred in the
context of soile a living, complex ecosystem [49]. These
types of studies are significant as the viral envelope (a
phospholipid bilayer) has been shown to be more prone
to desiccation and thereby may be more easily disrupted
in the soil environment compared with a ‘naked’
nonenveloped virus. A study examining the survival of
avian influenza (H5N1) in soil demonstrated that this
enveloped virus did not survive in sandy topsoil but did

survive in purchased construction sand and compost
suggesting that different soil characteristics greatly
impact virus survival [53]. In summary, factors that affect
virus stability in soil include temperature, relative hu-
midity, sunlight/UV radiation, solutes, pH, organic
matter, types of clays, nutrient status, type of virus, and
the presence/absence of an envelope [51]. Unfortu-
nately, there is not a set of soil indicators or universal
assessment(s) that predict viral stability in the soil.

The second major characteristic that affects viral sur-

vival in soil is the ability of the virus to aggregate. Gerba
and Betancourt [54] have shown that viral aggregates in
Current Opinion in Environmental Science & Health 2020, 17:35–40
the environment can support viral survival and resis-
tance to disinfection, which results in underestimation
of viral titer in the soil. The studies that use bacterio-
phages as surrogates for eukaryotic viruses, which we
argue is not an adequate comparison, have shown that
hot deserts have the lowest bacteriophage abundance,
cold deserts and agricultural fields have an intermediate
abundance, and the highest abundance is found in

forested and wetland soils. However, more studies are
required to examine the survival of eukaryotic viruses in
soil.

The current SARS-CoV-2 pandemic has led many to
ponder if this novel virus survives in soil. A brief dis-
cussion by Núñez-Delgado [55] suggests that soil may
become contaminated with SARS-CoV-2 from waste-
water and sewage sludge, but no research studies have
been done to date on SARS-CoV-2 and survival in the
soil. Lal et al. [7,8] and Tang et al. [56] have advo-

cated for research into possible pathogenesoil in-
teractions involving SARS-CoV-2. We do know that
SARS-CoV (the first SARS pandemic) was spread
person to person via inhalation of respiratory droplets,
through contact with virus-contaminated surfaces, and
via the fecal droplet-respiratory route [57,58], but
whether SARS-CoV-2 behaves in a similar fashion is
unknown (especially in reference to the fecal droplet
route) [59]. RNA viruses such as SARS-CoV-2 are
highly prone to mutation; in fact SARS-CoV-2 has
already mutated into two types (L and S) [60]. The

presence of an envelope suggests that if SARS-CoV-2
survives in the soil, it would be for a relatively short-
er period of time (for just a few days [61]) than if it
was a nonenveloped virus [51,55]. To date there are no
peer-reviewed publications specifically examining the
survivability of SARS-CoV-2 in soil. As outlined by
Núñez-Delgado [62], more research is needed on
SARS-CoV-2 in soils and in potentially contaminated
substances added to soils (i.e. wastewater and sewage
sludge). Fortunately, the methods used to study vi-
ruses in wastewater and sewage sludge may carryover
to soils.
Conclusion
The soil is home to many pathogens. Some of these
pathogens can directly infect humans, but many more
are considered zoonotic diseases, infecting humans via
vectors and/or carriers living in or on the soil. As humans
continue to interfere with ecological conditions
throughout the world, the risk of exposure to these and
other novel pathogens will increase [16]. So what can we
do to prevent soil-borne diseases? Lal et al. [7,8] and
Steffan et al. [63] have provided a blueprint forward

placing soils (soil quality and functionality) at the
forefront of human health and possibly a path to pre-
vent/reduce the risk of future pandemics.
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